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ABSTRACT
)78 &Y
We discuss a model Fokker-Planck equation, (14), for a single
species of particles in a plasma. This equation has several properties
in common with the real equation, and ascribes an approximately correct
behavior to most of the particles, though incorrect for the high energy
tail in the thermal distribution. It is shown that the equation can be
solved completely, for the small perturbations of a uniform plasma by
electric fields harmonic in space and time, in an external magnetic
field. Applications to ionospheric radar scattering are briefly
discussed; it is shown that in certain circumstances ion-ion collisions
can have a profound effect on the scattering even though the collision-
frequency is much smaller than the ion gyrofrequency, and this appears

to agree with observation. /7££f1544
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I. INTRODUCTION

Some problems in plasma physics require that one takes account
of collisions but not to the extent that the dynamics is collision
dominated. In such a case, neither the "Vlasov" equations nor the
hydrodynamic equations (even treating each species as a distinct fluid)
are adequate; the former would omit the collisions, so including only
the collective interactions, while the latter would omit subtleties,
such as Landau damping, which arise only when distributions in velocity
space are considered. So we have to write down, for each species, an

equation such as

of of of [of (1)
§+ijx;+aj5—v—;_ dt/ ¢

where f(z, v, t) is the Boltzmann function in the usual notation, a
is the macroscopic contribution to the acceleration is a particle at
(5, v, t) and the term on the right represents collisions. When

there are large-angle binary collisions, (af/at)c is the usual colli-
sion integral due to Boltzmann, so is known but leads to formidable
analysis in the type of problem we have in mind. When the collisions
are not predominantly binary, the actual formula for (af/at)c in the
general case is not known, though in the case of a spatially uniform
plasma considerable progress has been made by numerous authors. The

expressions generally given are of the Fokker-Planck type

of o 1 9
(az)c “s Mty (B, ;1) (2)

Here Ai and Bi" are the "friction" and "diffusion" coefficients
respectively; besides being functions of the v at which (af/at)c is
calculated, they are also complicated functionals of f itself. When
the plasma is not uniform, as for example in plasma oscillations, the

calculations of Ai and Bij becomes extremely difficult.
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A procedure, due apparently to Bhatnagar, Gross and Krook (1954)
for making progress in problems governed by equation (l), is to replace
the right hand side by a simple expression qualitatively similar to the
correct one, and constructed in such a way that certain conservation
laws are not violated, It must also ensure that the distribution func-
tion tends to the one appropriate for thermal equilibrium if the gas is

isolated. The equation these authors used for this purpose was

(57) = vty (3)

where fmax is a suitable maxwellian distribution and v is a constant
which may be called the "collision frequency". This has come to be

known as the BGK model. It is suitable for representing the effects

of large angle binary collisions, so its applicability to plasma dynamics
is restricted to the case when it is the collisions with neutral particles
which are of interest. Bhatnagar, Gross and Krook (1954) and Gross and
Krook (1956) treated the problem of small-amplitude waves propagating

in a gas. The corresponding problem with the addition of a uniform
magnetic field was worked out by Dougherty (1963) and by Lewis and

Keller (1962). The results have found applications to problems con-
cerning the ionosphere (Dougherty and Farley, 1963; Farley, 1963a, 1963b)
with considerable agreement with experiment.

When the collisions to be described are those between charged
particles it is the "grazing" collisions which make the major contribu-
tion. These occur when the impact parameter lies between the inter-
particle spacing (N—l/S) and the Debye length; they are "small-angle"
and are not binary. To handle these, we naturally ask whether an
equation of form (2) but suitably simplified, could be used as a ﬁodel
in a way analogous to the work just mentioned. The incentive to do
this again springs from ionospheric matters. In the theory of incoherent
scatter the spectrum of density fluctuations in thermal equilibrium is
required, and the various methods which have been used all lead even-
tually to the solution of the Boltzmann equation. One prediction of

the collision-free theory is that for a fixed wave number Xk nearly
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orthogonal to an imposed field B, the frequency spectrum has resonant
peaks at multiples of the gyrofrequency; here it is the ion gyro-frequency
which is relevant because of electrostatic control by the ions (Fejer,
1961; Salpeter, 1961; Hagfors, 1961; Farley, Dougherty and Barron, 1961).
Despite careful search, these resonant peaks have not so far been
observed (Bowles, private communication). In the lower ionosphere the
ion-neutral collisions would be the most important, and using the BGK
model, Doughterty and Farley (1963) have shown how the resonances could
be smoothed out by the collisions. But in the F region another
explanation is required, and Farley (private communication) has given

a physical description of a mechanism based on ion-ion collisions which
it is estimated may be responsible for the loss of the gyro-resonances.
Paradoxically, Colin, Burns and Eshleman (1963) have actually detected

a weak gyro-resonance 1in another type of scattering; it seems to be
present in the E region at night but has not so far been detected
in any other circumstances.,

Our object here is to formulate an equation of the type (2) and
show how a formal solution can be obtained for small perturbations
harmonic in space and time, with the inclusion of a uniform external
magnetic field, This solution is suitable for numerical work for use
in the applications just mentioned. We shall restrict attention to a
single species of charged particles, and in dealing with ions this is
adequate as ion-electron collisions will have a negligible effect on
the ions. Corresponding work for several species is of course similar

in principle but even more cumbersome.

II. FORMULATION OF THE EQUATION

We wish to choose coefficients Ai’ Bij for (2) satisfying the
following conditions.
(a) The number density, momentum and energy at each point in

physical space shall be conserved. This requires

S(gﬁ-)c d®v = 0 (4)
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S (g{) . v, d°v =0 (5)

of 2 43
ve d =0
S(t v (6)
c
where v? = v v in the usual suffix notation.

k k
(b) The only solution of (af/at)c = 0 shall be the maxwellian

distribution, where the number density, drift velocity and temperature
are arbitrary.

We assume throughout that as v -+ o 1in any direction, f - O
faster than any power of v, and that Ai’ Bij are rational functions
of v; then in any integrations over velocity space contributions at
infinity are zero. Eq. (4) is therefore automatically satisfied.

We now propose to take

>
I

- v(vi—ui) (7)

B, = 2K 5 (8)
ij m ij

where v 1is an inverse time, independent of v, m 1is the mass, and

u, T are the local drift velocity and temperature respectively:

— 3
Nu, —Svifd % (9)
3NKT =Sm(y_—p_)2fd3v (10)

N being the local number density

N =Sfd3v (11)

and K is Boltzmann's constant. That (5) and (6) are satisfied is
eagily shown. Further we note that a maxwellian distribution with

drift satisfies
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g%T = - %f (Vj - uj)f (12)
J

from which it follows at once that condition (b) is satisfied.

This choice of Ai’ Bij appears to be the simplest one available.
It makes the friction coefficient proportional to the velocity relative
to the mean velocity, and makes the diffusion coefficient isotropic and
independent of velocity. This is indeed quite a good approximation for
most of the particles, but it is incorrect for the high-energy "tail"
in the distribution. For fact particles the friction ought to decrease
with velocity.

The choice of an isotropic Bi' imposes a restriction on our
model. The perturbations in velocity which Bij represents arise
from all the particles within the Debye sphere for the particle under
observation, and should really be calculated by considering the sto-
chastic electric field set up within the sphere (Thompson and Hubbard,
1960). Our assumption is that the spectrum of electric field fluctua-

tions is isotropic at this length scale. The condition for this is that

the Debye length be much smaller than the Lamor radius for a thermal
particle; this is usually the case.

The coefficients A,, B,  which we have defined are functionals
of f inasmuch as u, T depend on f through Eqs. (9) and (10).
This is also a property of the real kinetic equation, and it makes the
problem of solving it a non-linear one. Further, we have to consider
how v 1is to be calculated; though independent of v in this model,
it too may be a functional of f, and one would certainly expect it
to depend on N, for instance. This piece of information is not,
however, required in what follows, as we treat only the problem of
small perturbations about a uniform state, so that v becomes constant.

' In reality,

We shall rather loosely call v the "collision frequency.'
a consideration of the way (2) arises shows that l/v is the time in
which a thermal particle can expect to suffer a substantial change of
velocity. Such a change is actually achieved by a succession of many
small increments, which occur at a much greater frequency than v. For

numerical purposes in connection with the positive ions in the ionosphere,
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we can identify 1/v with t_ as defined by Spitzer (1956), Eq. (5.26)
namely
[
-1 11.4.4% 13/2

v o=t = T Tog A sec (13)

where A is the atomic weight of the ions, N is the density in cm_s,
i
and /A = Egg (K3T3/nN)é. Actually 1log /\ is very slowly varying,
e
and is about 13 for typical ionospheric conditions.

Our kinetic equation is, finally,

of of + of _ ) (v .- )f+1{_r1_‘.af (14)
St Ve Ty ar T e () e oy

IIT1. SMALL PERTURBATIONS

Following the usual course we write £ = fo + f1; where fo is a
maxwellian distribution with N = No’ T = TO and zero drift velocity,
while f; is a small perturbation. The external accelerztion in the
unperturbed state is supposed to be just that due to a uniform magnetic
field, B. The small additional acceleration in the perturbed state
will now be called a. We write N = No + Ny, T = TO + T3 and note
that u is a perturbation quantity. As mentioned above fo makes the
right hand side of (14) vanish identically for any value of v, so we
may let v have its unperturbed value during the perturbations. So

to the first order, the right hand side of (14) is

of = 9 v -uf + LS T afl + T afo
5? c v 5;; J 1 j o m o 5;; 1 5;;

while the acceleration term on the left becomes

o of, afo
R‘!x§>jwj+aj§v‘j
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Writing in explicitly the derivatives of fo (Eq. (12) with zero
drift) and collecting the terms in fo and f; on the two sides of

the equation, (14) becomes

Of,y ofy o of, 3 KT of,
= B - _
S s E Tme X By5 vy (Tt w av
J
m mujvu T1 mv?
= X aj ijo + v KT + T \gkr ~ 3 fo (15)
o] (o] (o] (o]

Here we have a linear equation for f3; but we have to remember
that u and T; are integrals over f;; in fact on taking

perturbations of (9) - (11) we have

N; = S‘fldav (16)
u, = }—-S¥ v, d3v (17)
i N %5
o
T, .g
-1 m 2¢ 43y -
=5 |3rroJVvifid’v - Ny (18)
(o] (o] o

IV. FORMAL SOLUTION

The procedure for dealing with these integral terms is the same
as in the BGK model. For a disturbance harmonic in space and time we
first solve (15) for f; supposing the right hand side given; this is
solely a problem in velocity space and u, T; are merely coefficients.
When this solution is substituted into (16) - (18) we have a set of
equations for f£;, N3y, u and T; and then the solution for any of
these quantities is only a matter of algebra. Writing the left hand

side of (15) as 0 f; where ) is a linear differential operator,
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suppose we can solve any equation ) fi1 = h where h is harmonic in
-1
space and time, so that symbolically £, = D ""h. The solution of (15)

for £, 1is

m -1 vy m -1, , -1
fi1 = ———-(aj + vuj) 0 (vjfo) + _f; EE; D (v fo) - 3 fo (19)

N - S =.gvi... @—1(Vj...f0)d3v (20)

where we shall need at most 2 suffixes before or after H. Each
suffix (if any) labels the component of v to be inserted in the

appropriate place in the integral. In this notation Egs. (16) - (18)

are
n VT]_ n
Ny = gr— (a. + vu_)H, + — (ET_ Hjj—3H> (21)
O o o]
m VTl -
= — + H + — (— H. -3 H 22
No%i = KT (uj Vuj)i i 7T (KT i35 i ) (22)
(o] o (o]
Ta m m vTa m
- = — + H + — {7/ .. H -3 __H 23
Ni#N, T_ T 3KT_ \KT_ (aj Vuj)ii 3T, (KTO ii 33 Cid ) (23)

Here we have explicit equations for N;, u and T;, and insertion
of u and T; into (19) would make the latter an explicit equation
for f;. However, for many purposes the details of f; are not in fact
of interest; in particular in plasma physics we need only N; and u
to find the contribution which a species makes to the charge and current
densities and so combine the dymamics with maxwell's equations. As
Ny is given simply in terms of div u, we solve (21) - (23) for u

alone. The result is

Nou, =M, , (aj + vuj) (24)
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where

3v(m H —H)( s H—H)
KT i . —H |
o o ippi SKTO aa i j

m 2 m
H -—2-( HtH )+ H
3KTO) pp qq  3KT_ (pp aq’ }

(25)

and solving (24) explicitly, in matrix notation

v -1
Ncrg_<1-§-1\_a) Ma (26)

where I is the unit 3 x 3 matrix. It is to be noted from (25) that
only certain contractions of all the possible H-functions (with any-
thing from 0 to 4 suffixes) are required. But first we must develop

a general technique for constructing these functions.

V. PROCEDURE FOR SOLVING BOLTZMANN'S EQUATION

Let us take as our standard form of Eq. (15)

of of e of o) o%f
= - - - ; 27\
St Vot me (‘_(XE)J. S5~V Sv (vjf) NS5 Svo h(x,v.t) (27)
J J J J J
where 1 = vKTo/m, h is a given function and we omit the suffix from

f; in what follows.

Two general routes appear here. In the first we impose at once the
harmonic variations in x and t and attempt to solve the differential
equation in velocity space with appropriate choices of h, finally
evaluating the integrals (20). This is the procedure used by Landau
(1946), Berstein (1958) and many others, in the case of no collisions.
Although it seems inviting, it is a gocd deal more difficult in our
problem, as (27) is now second order in v, with its coefficients
dependent on v. Actually these coefficients are linear in V¥ and a

generalization of Laplace's contour integral method (Burkill, 1956) may
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be used, the calculation looking superficially like a Fourier transform with
respect to v. Eq. (27) has been considered in this way for the case of
no magnetic field by Lenard and Bernstein (1958, unpublished).
The second route to be followed here 1is to solve first (27) in
the case when h is a unit source at a point (x , V ), at time t ,
—o’ —o o

i.e., when

h(x,v,t) = 8°(x-x ) 8°(v-v ) &(t-t ) (28)
or equivalently to set h =0 for t > tO and to solve with the
initial value f = 63(§—§0) 53(K'X0)' We call this solution
G(§,X,t,§o,zo,to), the Green's function. The solution for a general
h is then the convolution of G with h, a 7-fold integral. The
quantities i"'Hj"' are therefore 10-fold integrals. In the
absence of collisions G is simply a 6-fold d-function transferring
the source from (5020) to a point (E’X): these two points being

on the same "unperturbed orbit" and at times to’ t respectively.
This follows from the fact that with v =1n =0 (27) is only first

order, so f 1is constant along the characteristic curves

dx . dv .
dt = J = J (29)

which are just the unperturbed orbits. Thus most of the 10 integrations
exist only in a trivial sense and the formulae are easily reduced to

a single integral, whose physical significance is a summing of
perturbations over the past histories of particles.

When collisions are included the Green's function is not a
®-function. A perturbation is not simply convected along an unperturbed
orbit, but spreads out owing to the term -7 52f/avj5vj. As one might
guess from the origin of this diffusion term as a stochastic process
in velocity space, G becomes a Gaussian distribution in x and ¥
centered on the instantaneous position on the unperturbed orbit. The
coefficients of this Gaussian function are somewhat cumbersome, though

elementary functions of t, and the "unperturbed orbit" must now take

SEL~64-003 - 10 -



account of a frictional contribution —vv'j to the acceleration. The
form of G itself gives some insight into the behavior of the gas, and
we shall also see that it is again possible to reduce the 10-fold inte-
gral to a single one. Unfortunately quite a number of cases of this

integral will arise because of the various types of H needed in (25).

VI. CONSTRUCTION OF THE GREEN'S FUNCTION

In this section the particular form taken by the coefficients in
(27) is irrelevant; all that matters is that the coefficients of the
second derivatives are constant and those of the first derivatives
linear in the independent variables. It will therefore be clearer to

consider the general equation of form

of 0%t of
+ Sw 5% + Se + =0 30
5; aij xi xj bijxj xi cf ( )
where xi (i=1,2,...N) represents all the independent variables other

than t (so including x and v in our application, with N=6). The
coefficients aij’ bij and c¢ are all constants, aij being symmetric.
We take care not to assume that aij’ bij are non-singular matrices;
they are actually singular in our problem. We see that when h = 0O 1in

(27), that equation takes the form (30) in this notation; further we

ii
The problem is to find f(x,t) such that f —»& (x-y as t =0

N
have c = b,., which ensures that [fd x is a constant.
N

for any given y, so we have a unit source of f at x=y and t=0.
First we note that provided we can construct all the, loci X(t)

satisfying

— =b, Y, (31)

the problem is reduced to the case of a source at the origin, i.e.,
y = 0. In the plasma problem these loci are just what we called the
"unperturbed orbit." For let g(g,t) = g(z—z(t—t‘),t—t‘) be the
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solution for unit source at y at time t = tt if X(t) is the orbit
fixed by X(O) = y. This solution obviously has the right initial

condition, and noting that

the left hand side of (30) becomes

Bg 5g in ag

d2%g
- —_ + b
5? Sxi dt * aij SxiSXJ ij Xj Sxi * cg

where g and its derivatives are evaluated at (x-Y(t-t'),t-t'). We
can write this
dy
ag a2g ag ag i
+ -Y + + b, Y, - —
[:5? 343 Sxiéxj * bij(xj j) Sx, cg 3x 1475~ at
The first square bracket is zero for t > t' by construction of g.
The second is zero by construction of Y.
To find this standard solution g(g,t) we assume the form

(32)

log g = log p - % qijxixj

where p’qij are functions of t only and the quadratic form qijxixj
is to be non-negative (the factor % 1is merely conventional). On
evaluating the various derivatives, substituting them into (30) (g
playing the part of f) and dividing through by g one obtains

eventually

dg
1 dp k4

- == - a + + -l —— - b X X =0
p dt i3%; C} {/2 dt 23 5% 5%01 i %41 [ x4

For this to hold identically in x, t, the first bracket must vanish,

and the second bracket symmetrized with respect to k,{ must vanish,
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so we have an equation for p (which we shall not actually need), to-
gether with an equation for q which in matrix notation is

dgq
- gt 292a-ab-b'g=0 (33)

Here E' denotes the transpose of b; a and q are of course already

symmetric. Writing r =gq leads at once to the linear equation

E+2a-br-rp =0 (34)
We mentioned in the previous section that for the plasma problem
one would expect that g would be a multivariate normal distribution,
such as (32); from this point of view the coefficients r are more
significant than q, for they are just the variances and correlations
of all the variables concerned. Using this idea a slightly shorter
derivation of (34) arises if we assume the form (32) and integrate
(30) over all x-space after multiplying by suitable components of x.
However, the derivation outlined above actually verifies that (32) is
applicable. We observe also that the initial conditon for r is
clearly r =0 at t = 0, making all the variances and correlations
zero. Finally in the case when c¢ = bii’ so fdex is constant
(and equal to unity for our g) we need not solve the equation for

p(t), for we have
p(t) = [(2n)Vdet(r)] ™% (35)

The solution of (34) presents no difficulty in any specific case,
but the form of the solution depends on the ranks of a and b, as
one can see by imagining a change of coordinates to make a and b
diagonal. Rather than enumerate the cases which could arise we deal
later with the particular one we need in the application.

To complete the general theory of an equation such as

of o%f
+ +

of
5t ¢ %4 %, 0% bijxj 5;; + cf = h(x,t) (36)
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we may now write down the solution for any problem in which f - 0 as

t » o and h(g,t) is given. It is the convolution

t
M N
£(x,t) = h(y,t') G(x,t,y,t") d ydt’ (37)
y t'=-00
where
G(x,t,y,t') = glx-¥(t-t'),t-t"] (38)
and
g(x,t) = p(t) exp {—% qijxixj> (39)
-1

is the standard solution just derived, with g =r , r given
by (34), p by (35) and Y(t) is the solution of (31) with Y =y

at t = 0. Writing T = t-t', (87) is

f(x,t) = S‘ h(y,t-T) g(EfX(T),T)dNydT (40)
T=0

<

VII. THE PLASMA PROBLEM IN ONE DIMENSION WITHOUT MAGNETIC FIELD

As an example of the above process, let us consider the equation
governing a plasma, (27) reduced to one dimension without magnetic

field, i.e.,

%f?_n:_zf_'_v%_vv%—vf:h(x,v,t) (41)
v

Thus x becomes (i) and

i=00 2=01 c = -
0 — 0 -v
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Write r =(

< W

) ; then equation (34) is
a (e _ 60y _{ 28 7-vBY} _
dt(B 7) 27(0 1) (7—vB —2v7> =0

o -2 =0

p+vg -y =0

7 + 2vy - 2n =0

These are readily solved for 7y, B, @ in turn, each to be zero at

t =0, giving

p =L (1 _ 267V e°2vt) (42)

and one would have

1

(t) = ———;
’ 2 (ay-p?)*

-1
We note that for t<< v , « :12nt3/3, B~ nt?, o ~ 2nt.

VIII, FORMAL SOLUTION OF THE PLASMA PROBLEM

Knowing that we can construct the details of the Green's function
let us first examine formally its application to the problem on hand,
namely the construction of the functions i...HJ,... which describe a

plasma in a harmonic perturbing field. We take N = 6 and interpret
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x of the general theory as the column vector %-) . Equation (27) is
an example of equation (36) with suitable choices of a,b and c¢. The
solution is therefore as in (40), but we have to provide some additional
notation. For the dummy variable y of the general theory we now
write x' for the space part and v' for the velocity. For the orbit
X(t) we write x' + X for the space part and V for the velocity,

so that X,V is actually the orbit which starts at X =0, V= v!

at time t = 0. This is a convenient definition, for X, V now depend
only on (X', t) and x' will soon drop out of the calculation.

Specifically, we have

ax v
T, g e B-wW (43)
In this notation (40) is
(o8]
£(x,v,t) = S S h(x',v', t-T)glx-x"'-X(v',7),v-V(v',7),7]d°x'd®v'dr
x' v' =0
i (at-kx)

We assume a dependence like e in space and time for f and
h, with the usual convention that the problem be solved for o (w) >0
in the first instance and then analytically continued, the symbols f
and h representing the complex amplitudes in the usual way. Also

write £ = x-x'. Then

£(v) = SS S ei(5°5'“r)h(x') gle-Xx(v',7),v-V(v',7),7]a%ed®v"'dr

£y =0

th st
As we want to calculate not £(v) itself but merely the O 1

b »

nd
and 2 moments of it with respect to v, we construct the Fourier

transform
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[o¢]

1(g) = oY ¢(v)d’y = H S Sei(E'ﬁE'X'“ﬂ) h(z')
¥

v' 1=0

X gle-X(v',1),v-v(v',7),7]d®vd3v'd? £t

The required results are therefore given by I and its derivatives
evaluated at 0=0. Holding X' and T fixed, a trivial change of

origin in the £ and v spaces gives us

(o= (0 T ateone e o

Evy' T=0

. 7 . + . LY
61(5 E+o-v

X v) g(e,v,7) d®vd®v'd3ear

The integrations with respect to £, v can now be carried out, being
just the Fourier transform of a gaussian distribution in 6 dimensions;
we note that at this point the need to calculate the normalizing

function p(t) drops out. The result is

o (0 ] atere et o
=0

't

X exp [—yz(g,g) r (:lfq)]d%'dfr

where r is the 6 x 6 matrix of the general theory.

|

Since X and V actually depend linearly on v', let us

introduce the abbreviation

k- X(v',T)+gV(v',T) = prv' (44)
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so that p(T) is readily calculated and is linear in k and J. As
n(v') is to be a maxwellian distribution multiplied by 0.1, or

2 components of X' let us calculate I for the case

3
' 3/2 —mx'2/2KT
No l2m&T €
(o)

so that I and its derivatives with respect to p, all evaluated at

<

o/

h(v') = & (45)

p =0, give all the required information. The v' integration is now

also the Fourier transform of a gaussian function, and carrying it out

yields

19 1=

> -KT
I=N S~ exp 2m0 (p + p)? - %(E’E)Z:( )—iaﬁ dt  (46)

T=0

This is the promised single integral, and is the analogue of the so-
called "Gordeyev integral" familiar from earlier work. The exponent is
just a quadratic form in k,p and O whose coefficients are somewhat
cumbersome (though elementary) functions of T. The collision-free
theory is of course recovered by setting r = O, and there is also some
slight simplification in the orbits as v = 0 in (43). In addition,
there is much less to calculate owing to the great simplification of
(25) and (26).

We may record here that the H-functions required in (25) and (26)

are given explicity in terms of our integral I by

J =
| =

o)
[

) )
i...HJ,... = [} 55; cee 3 55; oo I](T=p=0 (47)

IX. COEFFICIENTS IN THE ABSENCE OF MAGNETIC FIELD

The process will be made clearer by working through the case

B = 0. The unperturbed orbits are given by (cf 43):

dX av
— =V = = -
dt = =’ dt v¥
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so the solution starting at x =0, V=v' is
veye ' x=Zyvi(1-e™h
Comparing with (44),
- e s o7 (29

The matrices a and b of the general theory are conveniently parti-

tioned into 3 x 3 matrices:

aofoo) ,_fo1
2= o) 270 =

(I being the unit matrix).

e s P ~ fn o= . ~ - N . i

Thus, the equation for r, (34), is formaily the same as in the one-
d

dimensional example ( .7) and we have

oo eI
- <Bl 71) (49)

with o, B, 7y as given by (42). So

)

Recalling that 17 = vKTo/b one can combine (46), (48) and (50) to

=

|

ok® + 28k 0+ I (50)

(k,0) £(

lq

obtain

KTo 2 -vt\, 2 2 2 -vt -vt .
I =N exp (- — |=—(vt-1+e " )kZ+cZ+p3+ =(1-e V)(p)-k+2e ' 7.p| -iwt) dr
o 2m 2 - = = v - == -
0

(51)

I itself evaluated at 0J=p=0 is therefore
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2
-vt
N Sn exp { ~ KTk (vt-1+e v ) - iwt ) dt (52)
© o mv?

whilst the derivatives required in (47) involve similar integrals with
various other factors preceding the exponential. We may compare (52)

with the corresponding integral in the collision-free case,

’ KTk?t? .
N, §exp{ o iot ) dt (53)
0

to which (52) does of course tend as v - O.
(51) is symmetric in g and 0 so that the H functions are

actually the same whether the suffixes go before or after H.

X. COEFFICIENTS IN THE PRESENCE OF A MAGNETIC FIELD

We now consider the full equation (27), and again apply our general
technique for obtaining the Green's function. The work is similar to
the previous section: we calculate the orbits and solve the equation
for r by writing a, b and r in partitioned form. But the 3 x 3
matrices so introduced are no longer diagonal in ordinary cartesian
coordinates. To avoid the excessively tedious calculations which would
follow on account of this, we make a transformation to coordinates in

which they are diagonal. Namely we define
| — [
X) = (x+iy)/2/2 , x0 =z x 1. (x—iy)/zé (54)

as the new coordinates, denoting the old ones by (x, vy, z). Similar
formulae hold for components of velocity. The numbering of the new
coordinates (due to Buneman, 1961) is particularly convenient as the
suffixes can also be used as algebraic quantities. We shall use Greek
suffixes such as A, u, etc. to label the new coordinates. The
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-

transformation (54) is not orthogonal, although it is unitary. We
therefore distinguish between contravariant vectors (such as X 1in the
above transformation) and covariant vectors, with the usual suffix

notation, It is easily verified that the scalar product of two con-

-A
travariant vectors A, B is }E: AKB in the new coordinates, and

A

this must be identified with }E: A)Bx. Clearly the metric tensor
A

is B and raising or lowering of the suffixes is achieved by

A, -u
simply changing the sign. (Note that this is not in geﬁeral the same

as taking the complex conjugate, as some of our vector quantities are
already complex representatives of harmonic quantities). To convert
all the previous results to general tensor notation one must decide
for every suffix whether it is covariant or contravariant,. This can
be done merely by recalling that any pair of contracted suffixes must
be one of each type; we shall do this without further comment. A
point calling for special care is that the matrix b as introduced in
(30) is "mixed," having one suffix of each type, and is also non-
symmetric, the "first" suffix being the contravariant one. Thus, when
the transpose of this is required one should, strictly speaking, use a
more cumbersome notation to indicate the order of the suffixes;
fortunately we can avoid this as the calculation proceeds immediately
to the partitioned matrices, and all the 3 x 3 matrices involved turn
out to be symmetric.

In these coordinates the equations for the orbits, (43) become

A
dX N av oA
= o =~V (55)

where ( is the gyro-frequency eB/hc.

As this is to be identified with (31) we have at once

»-(3 A) (50)
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where /\ is a diagonal matrix

A L‘ - (vmmiﬁ (57)

The orbit starting at X = 0, V =yv is therefore

A
N v _ -(v+iQk)tj
X" = oo {} e (58)

A A ~(v+iQN\)t
=ve

\
The defining relation (44) for p is

A A A
p.)\V = k)\x +o'>\v

and so

_ ky [% _ e—(v+iQA)t] L 7 o (vrigN)t (50)

PN T vrion A

To find p% we of course raise the suffix, noting that this involves

a change in sign of A where it appears as an algebraic quantity.
Turning to (34) to be solved for r, we note that r and a

are bocth as first introduced, symmetric with both suffixes contra

variant. We can write, by analogy with the case of no magnetic

field
a B 0 0
£=<@.'z> §_=<9_ﬂ> (60)

Here P may be non-symmetric and the form taken by 17 in these
coordinates will be given shortly. Carrying out the multiplication

of partitioned matrices, (34) is
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- (e)=0 ]

ag
< +B A-z=0 > (61)

dy
- M +rAL+2A=0

P

As previously, we can now solve for 7, B, & in that order, and the

fact that we are dealing with matrices presents no difficulty as N is
diagonal. We note that 1n, which is nI

A, -u

in ordinary coordinates,
N
becomes 7 H oo nd"’

The equation for y is

91;; _ ZWXu +/\Z:\ S8 7X€/\:
= znsx"“ + (v+im)77‘“ + (V+inu)7)\pL
i1.e.,
97%: + [2v+in(A+p)) 7)\u = 2T157\’ g

As y = 0 initially, we can clearly take 7Xu =0 if Mu £0
If A+p = O we have

so the complete solution is

77\1_1 _ % (1 _ e-zvt)ak,-u (62)

Apart from the change of coordinates, this result is the same as for

no magnetic field (cf. Eq. (42) and (49)). Remembering that 7 gives
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the covariance in the velocity for a set of particles starting at the
origin, we conclude simply that the diffusion in velocity space con-
tinues to be isotropic in spite of the magnetic field, and this is not
surprising as our model is based on an isotropic diffusion. term,

2
-1 9 f/%viavi. N

The solution of (61) for 8 , & proceeds similarly, and again
the components are zero except where A+ 1 = 0. Here the results

differ from those for no magnetic field. We have

AKL
dp Ae, b A
at. TP ANc=7
i.e.,
Au _
QEEF + (v+iQu)Bxu = % ( 1-e ZVt)ax"“

with solution

—(v+i -2 ~(v+i
ANoqf1e (v+igu)t e vt _ (veiqu)t 6X,‘H (63)
B = v v+if v - ifu
Similarly
dOL)\l'L N LA
dt P
with solution
-yt -2yt
M 2 L, 2 “"(veosuQt-uQsinuot) - 2y , l-e v -
- 2
v2+u2? V2 o+ 202 v

(64)

We are now ready to construct our integral I, Eq. (46). The
exponent in the integrand contains a quadratic form in the components

of k, p, and ¢, which in our new coordinates is
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-KT
AA A A A
-zTo (97\+p7\)(p +0) - ko uku+2k7\5 LLaruﬂ‘crx? “cu)

It is convenient to write this as -¢ -y, where ¢ 1is the part

quadratic in kk and 9 1is the rest. Then

(o}

I =N S exp {—¢(t) - y(t) - iwt} dt (65)
0

and assembling the terms with reference to Eq. (59), (62), (63), and
(64) yields (noting that 7 = vKTo/m)

-yt -vt
o(t) = —;2 il (vi-1+e %) + N [cos x + vt-e ' cos (qt-x)]
lyz 2402
(+) - KT , ax+l . x+k Jx 1_e—(v—1ﬂl)t . \ l_e—(v+19%)t
V) = 7 | AT TR ey YN ¥ TTraon
={v+i 67

. PAJKG (v¥iQN\)t (67)
Here k” and kL are the magnitudes of the components of k parallel
and perpendicular to the magnetic field, so k” = kg, ki = 2k k
= k;+k;. The angle x 1s such that tan x = v/Q, and 0 < x < gx.

Since p and g are eventually placed equal to zero, 9 always
disappears from the exponent in any integration actually carried out,
however, we need to know the formula for 9 in order to differentiate

I with respect to p or g.

XI. CONSTRUCTION OF THE H-FUNCTIONS

To make use of our fundamental results, Egs. (24)-(26), we have
to construct the various "H" functions required in (25). These in

turn are known in terms of I by means of (47). We should first
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express these results in terms of the (1,0,—1) coordinates with due
regard for the position of the suffixes. Since u and a are naturally
contravariant, M will be a mixed tensor, with the first suffix
contravariant. Hence the correct invariant statements of (24) and (25)
are

N Mﬁ (a%e ) (68)

where

A m AD m €
3”( " - 3KT HS)(HH " KT eHu>
+ 5 (69)

u - KT H
) o _ . m f[e B m €0
Nom3, 4 3KT_ <eH+H6 >+ <3KTo ) Mo

and (26) is formally the same. (47) becomes

\ [ - _a_]
HM--- i d oy 1y - g=p=0 (70)

In other words, the rule is for a suffix before H, apply 5/150,
for a suffix after H, apply 0O/idp; for a contravariant suffix
differentiate with respect to a covariant component and vice versa.

The simplest of these functions is H itself, which is

7
H=N_ j exp {}¢(t)—iQt> dt (71)

0

This is easily seen to reduce to the "Gordeyev" integral in the limit
v > 0. The additional factors, which have to be inserted for the H's
with one or more suffixes, are obtained from derivatives of type (70)
-V

with e playing the part of I. Thus, one has to compute integrals

of the type
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N, S_F(t) exp {}¢(t)—iwt} dt (72)

0

where F(t) has whatever is the appropriate tensor character. We now

list the required expressions F:

For xH , F is
H

_9° 35

“ A =(v+igh) KTo * X »[l_e-(v+iQK)tj [:l—e_(v+iQ“)t]
(2

u m (73)
P (vign\) (v+igu)
m AD
For H 3KT H&’ F is
o
iKT (xx -(vigh )t )k k2 (1-2¢ " cos nrre VY) )
o kk o l-e _ﬂ (1_e—vt)2 . L
3m m v+i0A 2 V2402
. -(v-io\)t
- % (vHig\)t 1-e (74)
v - iQA
For H - — A F is the same as (74) with A replaced

) SKTO %Hu'

A
by 4 and k by ku (but no changes of sign in the suffixes).

m € o) m 2 €5 .
For H - 3KTO (EH + HS )»+ <3KTO> €HS, F is

4K -
2 -2yt To —vt k2(1-e Vtzz
3° T Tom €
V2
k2 2 .2
- -2 2 -
+ L (y-o ((1 + e Vt) cos Qt—2eva b —2vo (1-e Ytein Qt)]
vZ+0® [v3+0? v2+0?
KT 2 k2 k2 2
- -vt -2
+ (-?fl) -ﬂ-(l—e Vt)z + ——EL— (l—Ze Vicos qt+e Vt> (75)
m v2 v2+Q2
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Though these expressions are somewhat cumbersome, calculation of
all the integrals in Eq. (69) by computer seems quite feasible.

To recover the results for no magnetic field one simply sets
Q=0 and regards A and p as ordinary cartesian suffixes; the
position of the suffixes being now irrelevant. Placing k along a
coordinate axis makes Mij diagonal, thus separating longitudinal
and transverse effects, so that no elaborate matrix calculations are
necessary. This will not, however, be pursued here, as our main
interest lies in asking how easily the collisions destroy gyro-resonance

effects.

XII. PROPERTIES OF THE INTEGRALS

For the quantitive solution of any problem such as the dispersion
equation for plasma oscillations or instabilities, or the calculation
of spectra in incoherent scatter, there seems no alternative to numerical
work; however, some crude estimates of what can be expected in various
situations can easily be made. To do this we consider the integral
for H, as given by (71), and its dependence on w, k, § and wu. The
more elaborate integrals (72) can be expected to behave in much the
same way.

As an example, let us consider wave vectors perpendicular to k,

so that k” = 0. Then from (66)

2 -
¢(t) = _ KTk [cos X + vt - e Vtcos (Qt—X)] (76)
m(92+v2)

Now when v =0 so that X = 0, this becomes

KTk?

o(t) = (1 - cos qt) (77)

mQ?

This is periodic, so the integral
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S»exp - o(t) - iwt dt (78)
0

diverges for w = n{ (n = 0,1,2...), and this is the origin of the
gyroresonance effect. On reintroducing a small but non zero value of
k” the divergence is removed and a rough way to estimate the value of
k” (or, equivalently, the direction of 5) at which the resonance is
practically removed is given by Farley, Dougherty and Barron, 1961 {see
especially p. 253); this estimate agrees well with actual computations.
A similar procedure can be applied to (76): this time we keep k” =0
but increase v from zero. Again the additional factors so introduced
limit, and eventually remove, the gyro-resonances.

Suppose first that O < v << Q. Then on carrying out an integration

-vt

enterin

1]

such as (78) the factor
for it permits many oscillations of the cosine term before appreciably
reducing its amplitude. The term vt in (78) may however, be

important, for it introduces a factor

(KTkzvt )
exp —-|—
m§?

in the integrand of (78). The question is whether this factor permits
many oscillations of the integrand before reducing it severly. The

condition for this is clearly XKTk*v/m0® << 1, i.e.,
v << 0m/KTk? (79)

If KTkz/mQ2 is not much greater than unity, (79) is already satisfied
by the hypothesis that v << ). In that case the gyro-resonance effect
can only be destroyed by increasing v until v ~ (. On the other hand,
if KTk?/mo? >> 1, (79) may be violated even when v << Q. The full
condition for the survival of an appreciable gyro-resonances effect is

thus
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v<< 0 or °m/KTk?, whichever is the less (80)

This contrasts sharply with the criterion arising for collisions
with neutral molecules. Using the BGK model, the integrals entering
the calculations are all of the Gordeyev type but with w replaced
by w-iv. This leads to the sole condition v << @, (cf. Dougherty
and Farley, 1963).

XIII. IONOSPHERIC APPLICATIONS

To discuss the scattering of radar waves in the ionosphere one
needs to know the behavior of a plasma at a value of k fixed by the
experiment, and for a wide range of real values of . In the case of
incoherent scattering the perturbations are simply the fluctuations
arising in thermal equilibrium, and the collision-free theory has been
worked out in great detail. For the other much stronger forms of
scattering, the source of the perturbations is unknown but it seems
reasonable to expect that any explanation of its spectral behavior
will again be a matter for Boltzmann's equation. The question arises
how to include collisions in such calculations. For the collisions
with neutral particles the BGK model seems adequate, and has been
exploited by Dougherty and Farley (1963). For heights up to about 120 km,
the ion-neutral collisions have an appreciable effect because Vin > Qi.
Gyro-resonance effects would not therefore be expected. In the F
region, Vin is quite negligible, yet attempts to observe the gyro-
resonance in incoherent scatter at the equator have failed.

To account for this Farley (private communication) made the
suggestion that it is ion-ion collisions which eradicate the gyro-
resonance effect in the F-region, notwithstanding that the relevant
collision frequency, Vi is smaller than Qi. The reason for this
is of course that it is the second alternative in (80) which applies
and is not satisfied. Typical figures for the ionosphere might be
as follows. Taking T = 12000, the atomic weight as 16, log/\ ~ 13
and N; = 10%, (13) gives vy~ 7 sec—l, while @, ~ 160 sec™t. For
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experiments at 50 Mc/sec, K(=4y/wave-length) is 2.1072 cm—l, while

[ 4 —
(KT/m)/2 is about 8.10 cm/sec. Hence Qsm/KTk2 ~ 1.6 sec 1. Here,
then, v lies between the two quantities mentioned in (80). Actually

|
the interesting case in incoherent scatter occurs when Qi < k(KT/hi)é.

Q. \m,
R 1 .
the ion gyro—%requency which would have a pronounced resonance peak

'
For if E---'(EI")/2 = n, then n is roughly the number of harmonics of
in the spectrum; in the example just quoted n = 10. But the second
quantity in (80) is Q/nz, which then necessarily gives the stronger
inequality.

Another type of scattering is the aspect sensitive scattering
observed at Stanford. Recently Colin, Burns and Eshleman (1963) have
reported the detection of a weak but clearly identifiable component of
the returned signal with Doppler shift equal to the gyro-frequency of
NO+ ions. Higher harmonics of the gyro-frequency are not observed.

So far this effect appears to be restricted to the night-time E region.
Here an atomic weight of 30 is appropriate, and temperature about 3000,
and the operating frequency is 23 Mc/sec. Neverthless the figures are
not very different from those just quoted, if Ni is again 10%, But

in fact Ni decreases at night in the E region, and according to (13)
this decreases vii’ perhaps to an e xtent that (30) is now satisfied,

though by a not very strong inequality. In this case one would expect

a weak gyro-resonance effect to appear, as indeed it does.
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